Home
Class 12
MATHS
By using properties of determinants. Sho...

By using properties of determinants. Show that: `|1xx^2x^2 1xxx^2 1|=(1-x^3)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

By using properties of determinants. Show that: |[1,x,x^2],[x^2, 1,x],[x,x^2, 1]|=(1-x^3)^2

By using properties of determinants.Show that: det[[1,x,x^(2)x^(2),1,xx,x^(2),1]]=(1-x^(3))^(2)

By using properties of determinants, show that : |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

show that |[1,x,x^2],[x^2,1,x],[x,x^2,1]| = (1-x^3)^2

By using properties of determinants , show that : {:|( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) |:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:|( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) |:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)

By using properties of determinants , show that : {:[( 1,x,x^(2) ),( x^(2) ,1,x) ,( x,x^(2), 1) ]:} =( 1-x^(3)) ^(2)