Home
Class 12
MATHS
Prove that the determinant |(x,sin theta...

Prove that the determinant `|(x,sin theta,cos theta),(-sin theta,-x,1),(cos theta,1,x)|` is independent of `theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the determinant {:|( x, sin theta ,cos theta ),( -sin theta , -x , 1),( cos theta , 1,x) |:} is independent of θ.

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

Prove that the determinant {:[( x, sin theta ,cos theta ),( -sin theta , -x , 1),( cos theta , 1,x) ]:} is independent of theta.

Prove that the determinant {:[( x, sin theta ,cos theta ),( -sin theta , -x , 1),( cos theta , 1,x) ]:} is independent of theta.

Prove that the determinant [x sin theta cos theta-sin theta-x1cos theta1x] is independent of theta.

,x,sin theta,cos theta-sin theta,-x,1cos theta,1,x]|=8, write the value

Prove that (1+cos theta)/(sin theta)=(1+sin theta+cos theta)/(1+sin theta-cos theta) .