Home
Class 11
MATHS
B={x:x" is an integer ",-(1)/(2)<x<(9)/(...

B={x:x" is an integer ",-(1)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine if A sub B or A cancel sub B where A={x:x "is an integer "},B={3x:x "is an integer"}

If ={x:x=2n+1,n in Z} and B={x:x=2n,n in Z} then A uu B={x:x~ is~ an~ odd~ integer}~ uu{x:x is an even integer }={x:x is an integer }=Z .

Show that the following pair of sets are equal A={x : x is an integer such that x^2 B= {x : x is an integer such that -2 le x le 2 }

Determine if A sub B or A cancel sub B where A={x :x is an integer which is both even and odd"},B ={x:x is an integer, x ≠ x}

Determine if A sub B or A cancel sub B where A={x:x "is an odd integer"},B ={ x :x "is real and not an even integer "}

If A={x : x=2n+1,\ n in Z}\ a n d\ B={x : x=2n ,\ n in Z} , then AuuB={x : x\ is an odd integer }\ uu{x : x is an even integer }={x : x is an integer }=Zdot

Is the integer x odd? (1) 2(y+x) is an odd integer. (2) 2y is an odd integer.

Expression ((a+1/b)^(1/x)(a-1/b)^(1/x))/((b+1/a)^(1/x)(b-1/a)^(1/x)) is an integer if

Expression ((a+1/b)^(1/x)*(a-1/b)^(1/x))/((b+1/a)^(1/x)*(b-1/a)^(1/x)) is an integer if

Let f(x)=Ax^2+Bx+C where A, B, C are three real constants, if f(x) is integer for integral values of x, then prove that each of 2A, (A+B) and C is an integer. Conversely, if each of 2A, (A+B) , C is an integer then f(x) will be integer for integral values of x.