If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then
If ((a + i)^(2))/(2a-i) = p + iq, show that p^(2) + q^(2) = (a^(2) + 1)^(2)/(4a^(2) + 1)
Prove that (tan^(2)theta-1)/(tan^(2)theta+1)=1-2cos^(2)theta
Prove that (1 + 1/(tan^2A)) (1 + 1/(cot^2A)) = 1/(sin^2 A - sin^4 A )
If a+ib = (x+i)^(2)/(2x^(2)+1) , prove that a^(2) + b^(2) = (x^(2)+1)^(2)/(2x^(2) + 1)^(2)
Prove : ((1+cot^2 A)/(1+tan^2 A))=((1−cotA)/(1−tanA))^2=tan^2 A
FULL MARKS-ALGEBRA -Assignment Answer the following questions :