Home
Class 9
MATHS
If p(x)= x^(2) - 2 sqrt(2) x + 1, find p...

If `p(x)= x^(2) - 2 sqrt(2) x + 1`, find `p ( 2sqrt(2))`

Text Solution

Verified by Experts

The correct Answer is:
` =0+ 1=1`
Promotional Banner

Topper's Solved these Questions

  • ALGEBRA

    FULL MARKS|Exercise Exercise 3.3|12 Videos
  • ALGEBRA

    FULL MARKS|Exercise Exercise 3.4|14 Videos
  • ALGEBRA

    FULL MARKS|Exercise Exercise 3.1|12 Videos
  • COORDINATE GEOMETRY

    FULL MARKS|Exercise TEXTBOOK ACTIVITY|2 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

If x = sqrt(2) + sqrt(3) find (x^(2) + 1)/(x^(2) - 2) .

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Find the equation of the normal to the circle x^(2)+y^(2)=9 at the point (1//sqrt(2), 1// sqrt(2)) .

If x ,y in R satify the equation x^2+y^2-4x-2y+5=0, then the value of the expression [(sqrt(x)-sqrt(y))^2+4sqrt(x y)]//(x+sqrt(x y)) is a. sqrt(2)+1 b. (sqrt(2)+1)/2 c. (sqrt(2)-1)/2 d. (sqrt(2)+1)/(sqrt(2))

min[(x_1-x_2)^2+(3+sqrt(1-x_1^2)-sqrt(4x_2))^2],AAx_1,x_2 in R , is (a) 4sqrt(5)+1 (b) 3-2sqrt(2) (c) sqrt(5)+1 (d) sqrt(5)-1

If alpha,a n dbeta be t roots of the equation x^2+p x-1//2p^2=0,w h e r ep in Rdot Then the minimum value of alpha^4+beta^4 is 2sqrt(2) b. 2-sqrt(2) c. 2 d. 2+sqrt(2)

Find the possible values of sqrt(|x|-2) (ii) sqrt(3-|x-1|) (iii) sqrt(4-sqrt(x^2))