Home
Class 10
MATHS
(1)/(x+y)+(1)/(x-y)=7:(1)/(x+y)=(1)/(x-y...

(1)/(x+y)+(1)/(x-y)=7:(1)/(x+y)=(1)/(x-y)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

(6)/(x+y)=(7)/(x-y)+3(1)/(2(x+y))=(1)/(3(x-y))

Solve for x and y:(xy)/(x+y)=(1)/(5),x+y!=0;(xy)/(x-y)=(1)/(7),x-y!=0

If (1)/(x) + (1)/(y) = 2 and (3)/(x) + (4)/(y) = 7 , what is the value of (x + y) ?

Simplify : : ( ( x+(1)/(y)) ^(a) ( x-(1)/(y))^(b))/((y+(1)/(x))^(a) (y-(1)/(x))^(b))

1/(3x+y)+1/(3x-y)=3/4 and 1/(3x+y)-1/(3x-y)= -1/4

6/(x+y)=7/(x-y)+3 , 1/(2(x+y))=1/(3(x-y))

If (x+y):(x-y)=53:41, then (1)/(x):(1)/(y)=?

(x/y)^(-1)=(x)^(-1)/(y)^(-1)

If x and y are positive integer satisfying tan^(-1)((1)/(x))+tan^(-1)((1)/(y))=(1)/(7) , then the number of ordered pairs of (x,y) is