Home
Class 11
MATHS
Let a,b,c in R such that [a,b,c][[4,1,7]...

Let `a,b,c in R` such that `[a,b,c][[4,1,7],[2,-1,5],[1,-1,3]]=[[0,0,0]]`. If a=1 and `alpha,beta` are the roots of `ax^(2)+bx+c=0` then `sum_(n=0)^(oo)|(1)/(alpha)-(1)/(beta)|^n` is

Promotional Banner

Similar Questions

Explore conceptually related problems

" Let "a,b,c in R" such that "[a, b ,c][[4,1,7],[2,-1,5],[1,-1,3]]=[[0,0,0]]." If "a=1" and "alpha, beta" are the roots of "ax^(2)+bx+c=0" then "sum_(n=1)^(oo)(|(1/alpha)-(1/beta))|)^n"

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha)+(1)/(beta) =

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

if alpha,beta are root of ax^(2)+bx+c=0 then ((1)/(alpha^(2))-(1)/(beta^(2)))^(2)

If alpha,beta are the roots of ax^(2)+bx+c=0 then find the equation whose roots are (1)/(alpha^(2)),(1)/(beta^(2))

If alpha and beta are roots of ax^(2)-bx+c=0 then (alpha+1)(beta+1) is equal to