Home
Class 11
MATHS
" Let "a,b,c in R" such that "[a, b ,c][...

`" Let "a,b,c in R" such that "[a, b ,c][[4,1,7],[2,-1,5],[1,-1,3]]=[[0,0,0]]." If "a=1" and "alpha, beta" are the roots of "ax^(2)+bx+c=0" then "sum_(n=1)^(oo)(|(1/alpha)-(1/beta))|)^n"`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c in R such that [a,b,c][[4,1,7],[2,-1,5],[1,-1,3]]=[[0,0,0]] . If a=1 and alpha,beta are the roots of ax^(2)+bx+c=0 then sum_(n=0)^(oo)|(1)/(alpha)-(1)/(beta)|^n is

If alpha, beta are the roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3)) =

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha)+(1)/(beta) =

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

If alpha,beta are roots of ax^(2)+bx+c=0 then (1)/(alpha^(3))+(1)/(beta^(3))=

if alpha,beta are root of ax^(2)+bx+c=0 then ((1)/(alpha^(2))-(1)/(beta^(2)))^(2)

let alpha and beta be the roots of ax^(2)+bx+c then fin the value of (1)/(alpha)-(1)/(beta)

if alpha and beta are the roots of ax^(2)+bx+c=0 then the value of {(1)/(a alpha+b)+(1)/(a beta+b)} is

If alpha& beta are the roots of the equation ax^(2)+bx+c=0, then (1+alpha+alpha^(2))(1+beta+beta^(2))=