Home
Class 12
MATHS
The period of the function f(x)=4sin^(4)...

The period of the function `f(x)=4sin^(4)((4x-3 pi)/(6 pi^(2)))+2cos((4x-3 pi)/(3 pi^(2)))` is `k pi^(3)` then the value of `[1/k]` (where [ ] denote the G.I.F )

Promotional Banner

Similar Questions

Explore conceptually related problems

The fundamental period of the function f(x)=4cos^(4)((x-pi)/(4 pi^(2)))-2cos((x-pi)/(2 pi^(2))) is equal to:

Find the period of the function f(x)=3sin((pi x)/(3))+4cos((pi x)/(4))

The period of the function f(x)=3+(4)/(7)sin((2x-3)/(4)) is (i) pi(ii)2 pi(iii)4 pi(iv)3 pi

Show that function f(x)=sin(2x+(pi)/(4)) is decreasing on ((3 pi)/(8),(5 pi)/(8))

Define f : R to R by f(x) = 4 cos^(4)((x-pi)/(4pi^(2))) - 2 cos((x-pi)/(2pi^(2))) AA x in R If the period of f is kpi^(3) , then k = ……………..

Show that the function f(x)=sin(2x+pi/4) is decreasing on (3 pi/8,5 pi/8)

The least period of the function f(x)=cos(cos x)+sin(cos x)+sin4x is (k pi)/(2), then the value of k is

The period of f(x)=(sin(pi x))/(2)+2(cos(pi x))/(3)-(tan(pi x))/(4) is