Home
Class 12
MATHS
Let 'f' and 'g' be twice differentiable ...

Let 'f' and 'g' be twice differentiable functions on 'R' and `f^(11)(5)=8,g^(11)(5)=2` then `lim_(x rarr5)((f(x)-f(5)-(x-5)f^(1)(5))/(g(x)-g(5)-(x-5)g^(1)(5)))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f and g are differentiable at a in R such that f(a)=g(a)=0 and g'(a)!=0 then show that lim_(x rarr a)(f(x))/(g(x))=(f'(a))/(g'(a))

Let f be a twice differentiable function such that f''(x)=-f(x), and f'(x)=g(x),h(x)=[f(x)]^(2)+[g(x)]^(2) Find h(10) if h(5)=11

Let f be twice differentiable function such that g'(x)=-(f(x))/(g(x)),f'(x)=(g(x))/(f(x))h(x)=e^((f(x))^(2)+(g(x))^(2)+x)If h(5)=e^(6) then h(10) is equal to

Let f(x) = x^(3) + 5 and g(x) = 5x + 3 be two real functions. Find (f+g)(x)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x) is 2f^(-1)(x)-5( b )(1)/(2f^(-1)(x)+5)(1)/(2)f^(-1)(x)+5( d) f^(-1)((x-5)/(2))

If g is the inverse function of f an f'(x)=(x^(5))/(1+x^(4)). If g(2)=a, then f'(2) is equal to

If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x then g^(-1)(f^(-1)(5))

If g is the inverse of a function f and f'(x) = 1/(1+x^(5)) , then g'(x) is equal to