Home
Class 12
MATHS
If agt0,Bgt0 and A+B=pi/4, then the mini...

If `agt0,Bgt0` and `A+B=pi/4`, then the minimum value of `tanA+tanB` is

Promotional Banner

Similar Questions

Explore conceptually related problems

if Agt0,Bgt0 and A+B=pi/3 then the maximum value of tanA*tanB is (A) 1/3 (B) 1/6 (C) 1/2 (D) 1

If ab=2a+3b, agt0, b gt0 , then the minimum value of ab is

If agt0,bgt0 and the minimum value of a sin^(2)theta+b cosec^(2)theta is equal to maximum value of a sin^(2)theta+b cos^(2)theta, then (a)/(b) is equal to

If A+B=45^(@) , then find the value of tanA+tanB+tanA tanB .

If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)((27b)/(c))+root(4)((c)/(108a)), is

If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

If A+B=45^(@) , find the valueof tanA+tanB+tanA tanB :

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4