Home
Class 12
MATHS
If D=|[10!,11!,12!],[11!,12!,13!],[12!,1...

If `D=|[10!,11!,12!],[11!,12!,13!],[12!,13!,14!]|` then `k/3,` where `k` is the total number of positive divisors of `(D)/((10!)^(3))-4` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: o+=det[[10!,11!,12!11!,12!,13!12!,13!,14!]]

if D=det[[10!,11!,12!11!,12!,13!12!,13!,14!]] then (D)/((10!)^(3))-4 is:

Evaluate: =|10!11!12!11:12!13!12!13!14!

Let D=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| then D/((10!)^(3)-260 equals

The value of the determinant |(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| , is

Let N=|(10!,11!,12!),(11!,12!,13!),(12!,13!,14!)| Then N/((10!)(11!)(12!))= ______

The number of real solutions for 10^(x)+11^(x)+12^(x)=13^(x)+14^(x) is

The whole number 13 lies between 11 and 12.