Home
Class 13
MATHS
The function y = f(x) satisfying the con...

The function y = f(x) satisfying the condition `f(x+1/x)= x^3 +1/x^3` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+(1)/(x^(2))(x!=0)

Consider the function y=f(x) satisfying the condition f(x+(1)/(x))=x^(2)+1/x^(2)(x!=0) Then the domain of f(x) is R domain of f(x) is R-(-2,2) range of f(x) is [-2,oo] range of f(x) is (2,oo)

If f(x) is a polynomial function satisfying the condition f(x) .f((1)/(x)) = f(x) + f((1)/(x)) and f(2) = 9 then

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

The function f(x), that satisfies the condition f(x) = x + int_0^(pi//2) sinx . Cosyf(y) dy, is :

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) . If f(10)=1001, then f(20)=

A polynomial function f(x) satisfies the condition f(x)f((1)/(x))=f(x)+f((1)/(x)) for all x in R,x!=0. If f(3)=-26, then f(4)=

Let f(x) be a polynomial function of degree n satisfying the condition f(x)f((1)/(x))=f(x)+f((1)/(x)). Find f(x)