Home
Class 11
MATHS
Prove that cos (A + B) cos (A - B) = co...

Prove that
cos (A + B) cos (A - B) = `cos^(2) A - sin^(2) B = cos^(2) B- sin^(2) A`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos (A + B) cos (A - B) = cos^(2) B - sin^(2) A

Prove that sin (A+B) sin (A-B)=cos^(2) B-cos^(2) A

Prove that sin ^(2) A cos ^(2) B+cos ^(2) A sin ^(2) B+cos ^(2) A cos ^(2) B+sin ^(2) A sin ^(2) B=1

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A -B)/(2)).

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A +B)/(2)).

Prove that, (cos A + cos B)^(2)+(sin A + sin B)^(2)=4cos^ (2)((A-B)/(2))

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

sin^(2) A cos^(2)B + cos ^(2) A sin^(2) B + sin^(2) A sin^(2) B+ cos^(2) A cos^(2) B=

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A