Home
Class 11
MATHS
Prove that cos^(2)x + cos^(2)(x + (pi)/(...

Prove that `cos^(2)x + cos^(2)(x + (pi)/(3)) + cos^(2) (x - (pi)/(3)) = (3)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that cos ^(2) x+cos ^(2)(x+(pi)/(3))+cos ^(2) (x-(pi)/(3))=(3)/(2)

Prove that, cos^(2) A + cos^(2) (A + pi/3) + cos^(2) (A - pi/3) = 3/2

Find the value of cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))

Prove that: cos^(2)A+cos^(2)(A+(pi)/(3))+cos^(2)(A-(pi)/(3))=(3)/(2)

Prove that: cos^(2)A+cos^(2)(A+(2 pi)/(3))+cos^(2)(A-(2 pi)/(3))=(3)/(2)

Prove that: cos^(2)theta+cos^(2)((pi)/(3)+theta)+cos^(2)((pi)/(3)-theta)=(3)/(2)

Prove that cos ^(3) (x-(2pi)/(3)) + cos ^(3) x + cos ^(3) (x + (2pi)/(3)) = (3)/(4) cos 3x.

Prove that cos^(3)x+cos^(3)((2pi)/3+x)+cos^(3)((2pi)/3-x)=3/4 cos 3x

Prove that : cos^(2)A+cos^(2)(A+pi/3)+cos^(2)(A-pi/3) = 3/2

The range of cos^(2)(2(pi)/(3)-x)+cos^(2)(2(pi)/(3)+x) is