Home
Class 12
CHEMISTRY
The rate of reaction increases isgnifica...

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every `10^(@)C` rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every `10^(@)C` change in temperature.
`"Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C)`
Arrhenius gave an equation which describes aret constant `k` as a function of temperature
`k = Ae^(-E_(a)//RT)`
where `k` is the rate constant, `A` is the frequency factor or pre-exponential factor, `E_(a)` is the activation energy, `T` is the temperature in kelvin, `R` is the universal gas constant.
Equation when expressed in logarithmic form becomes
`log k = log A - (E_(a))/(2.303 RT)`
Activation energies of two reaction are `E_(a)` and `E_(a)'` with `E_(a) gt E'_(a)`. If the temperature of the reacting systems is increased form `T_(1)` to `T_(2)` (`k'` is rate constant at higher temperature).

Promotional Banner

Similar Questions

Explore conceptually related problems

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For which of the following reactions k_(310)//k_(300) would be maximum?

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For which of the following reactions k_(310)//k_(300) would be maximum?

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For a reaction E_(a) = 0 and k = 3.2 xx 10^(8)s^(-1) at 325 K . The value of k at 335 K would be

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For a reaction E_(a) = 0 and k = 3.2 xx 10^(8)s^(-1) at 325 K . The value of k at 335 K would be

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For the given reactions, following data is given {:(PrarrQ,,,,k_(1) =10^(15)exp((-2000)/(T))),(CrarrD,,,,k_(2) = 10^(14)exp((-1000)/(T))):} Temperature at which k_(1) = k_(2) is

The rate of reaction increases isgnificantly with increase in temperature. Generally, rate of reactions are doubled for every 10^(@)C rise in temperature. Temperature coefficient gives us an idea about the change in the rate of a reaction for every 10^(@)C change in temperature. "Temperature coefficient" (mu) = ("Rate constant of" (T + 10)^(@)C)/("Rate constant at" T^(@)C) Arrhenius gave an equation which describes aret constant k as a function of temperature k = Ae^(-E_(a)//RT) where k is the rate constant, A is the frequency factor or pre-exponential factor, E_(a) is the activation energy, T is the temperature in kelvin, R is the universal gas constant. Equation when expressed in logarithmic form becomes log k = log A - (E_(a))/(2.303 RT) For the given reactions, following data is given {:(PrarrQ,,,,k_(1) =10^(15)exp((-2000)/(T))),(CrarrD,,,,k_(2) = 10^(14)exp((-1000)/(T))):} Temperature at which k_(1) = k_(2) is

The rate of chemical reaction becomes double for every 10^@ rise in temperature because of