Home
Class 11
MATHS
Let {:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}...

Let `{:A=[(1,2),(-5,1)]and A^(-1)=xA+yI:}`, then the values of x and y are

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A= [[1,2],[-5,1]] and A^-1=x A+y I, then the values of x and y are

If A=[[1, 2], [-5, 1]] and A^(-1)=xA+yI , then

If A=[{:(1,2),(2,3):}] and A^(2)-xA=I_(2) then the value of x is

Let A = [(2,3),(-1,5)] . If A^(-1)=xA+yI , then the value of 2y+x , is ____

Let ((x)/(2)-1,(y)/(9)+1) = (2,1) ; then the values of x and y respectively are a) 3, 5 b) 6,0 c) 5, 3 d) 0, 6

5/(x-1)+1/(y-2)=2 and 6/(x-1)-3/(y-2)=1 then find the values of x and y

Let |(3,y), (x,1)| = |(3,2), (4,1)| . Find possible values of x and y are natural numbers.

Determine real values of x and y (x-yi)= (2+i)/(1+i)

If 2[[1,3],[0,x]]+ [[y,0],[1,2]]= [[5,6],[1,8]] , then the value of x and y are

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is