Home
Class 11
MATHS
[" 38.Let "S" be the sum,"P" be the prod...

[" 38.Let "S" be the sum,"P" be the product and "R" be the sum of reciprocals of "n" terms in a GP.Prove that "],[qquad [P^(2)R^(n)=S^(n).]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P^2R^n = S^n .

Let S be the sum, P the product, and R the sum of reciprocals of n terms in a G.P. Prove that P^2R^n=S^ndot

Let S be the sum, P the product, and R the sum of reciprocals of n terms in a G.P. Prove that P^2R^n=S^ndot

Let S be the sum, P , the product and R the sum of reciprocals of n terms in a G . P . Prove that P^2 R^n=S^n

Let S e the sum, P the product, adn R the sum of reciprocals of n terms in a G.P. Prove that P^2R^n=S^ndot

Let S be the sum P the product and R the sum of reciprocals of n terms in a G.P. Then prove that P^2R^n=S^n

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P^(2)R^(n) = S^(n) .

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P^(2)R^(n) = S^n .

Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P^(2)R^(n) = S^n .