Home
Class 11
MATHS
19.((e^(x)+sin x)/(1+log x))...

19.((e^(x)+sin x)/(1+log x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following functions with respect to x:(e^(x)+sin x)/(1+log x)

Differentiate (e^(x)+sin x)/(1+log x) with respect to x

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x)=)

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

lim_(x rarr0)(e^(x)+sin x-1)/(log(1+x))=

Evaluate the following limits : Lim_(x to 1) (sin(e^(x)-1))/(log x)

int (sin x + cos x)/( e^(-x) + sin x) dx is equal to a) log | 1-e^(x) sin x| +C b) log | 1 + e^(-x) sin x| + C c) log | 1+e^(x) sin x| + C d) log | 1 -e^(-x) sinx | +C

underset( x rarr 2) ( "lim") ( sin ( e^(x-2) - 1))/( ln ( x-1))=

lim_(x rarr0)(sin x-log(e^(x)cos x))/(x sin x)