Home
Class 12
MATHS
(x^2-(y-2)^2)/((x+2)^2-y^2)+(y^2-(x-z)^2...

`(x^2-(y-2)^2)/((x+2)^2-y^2)+(y^2-(x-z)^2)/((x+y)^2-z^2)+(z^2-(x-y)^2)/((y+z)^2-x^2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2)) is -1(b)0(c)1(d) None of these

The value of (x^(2)-(y-z)^(2))/((x+z)^(2)-y^(2))+(y^(2)-(x-z)^(2))/((x+y)^(2)-z^(2))+(z^(2)-(x-y)^(2))/((y+z)^(2)-x^(2))

Prove that |(x^(2),x^(2)-(y-z)^(2),yz),(y^(2),y^(2)-(z-x)^(2),zx),(z^(2),z^(2)-(x-y)^(2),xy)|=(x-y)(y-z)(z-x)(x+y+z)(x^(2) + y^(2) + z^(2)) .

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot

The following steps are involved in finding the value of (a^(x+y))^(x-y)(a^(y+z))^(y-z)(a^(z+x))^(z-x) . Arrange them in sequantial order. (A) a^((x+y)(x-y).a^(y+z)(y-z).a^((z+x)(z-x)) (B) a^0=1 (C) a^(x^2-y^2).a^(y^2-z^2).a^(z^2-x^2) (D) a^(x^2-y^2+y^2-z^2+z^2-x^2)

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))