Home
Class 12
MATHS
If f(x) = lim(n -> oo) n(x^(1/n) - 1) th...

If `f(x) = lim_(n -> oo) n(x^(1/n) - 1)` then for `x gt 0, y gt 0, f(xy)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=lim_(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal to

If f(x)=lim_(ntooo) n(x^(1//n)-1)," then for "xgt0, ygt0,f(xy) is equal to

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1) then for x>0,y>0,f(xy) is equal to

If f(x)=lim_(n->oo)n(x^(1/n)-1),then for x >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1), then f or x>0,y>0,f(xy) is equal to : f(x)f(y) (b) f(x)+f(y)f(x)-f(y)(d) none of these

If f(x)=lim_(n->oo)n(x^(1/n)-1),t h e nforx >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

Let for all xgt0,f(x)=lim_(nto oo)n(x^((1)/(n))-1) , then