Home
Class 12
MATHS
ABC एक त्रिभुज हैं और D,E,F क्रमश: BC, C...

ABC एक त्रिभुज हैं और D,E,F क्रमश: BC, CA, AB के मध्यबिंदु हैं| सदिश `vec(BC), vec(AD), vec(BE)` और `vec(CF)` को `vec(AB)` और `vec(AC)` के रूप में व्यक्त करें|

Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to

In triangle ABC, find vec(AB)+vec(BC)+vec(CA)

If D, E, F are the midpoints of BC, CA, AB of Delta ABC, then vec(A)D + vec(B)E + vec(C)F =

The value of vec(AB)+vec(BC)+vec(DA)+vec(CD) is

If A, B, C and D are the vertices of a square, find vec(AB) + vec(BC)+ vec(CD) + vec(DA) .

In a triangle ABC, if |vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10 , then the projection of the vec(AB) on vec(AC) is equal to :

If ABCDE is a pentagon then prove that vec(AB)+vec(AE)+vec(BC)+vec(DC)+vec(ED)+vec(AC)=3vec(AC)

ABCDE is a pentagon. Prove that the resultant of forces vec (AB), vec(AE), vec(BC), vec(DC), vec(ED) and vec(AC) is 3vec(AC) .