Home
Class 12
MATHS
" 7."|[-a',ab,oo],[ma,-b',bc],[at,d,-c]|...

" 7."|[-a',ab,oo],[ma,-b',bc],[at,d,-c]|=4a^(i)b'c'

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: [[-a^2,ab,ac],[ab,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Show that Delta=abs[[-a^2,ab,ac],[ba,-b^2,bc],[ac,bc,-c^2]]=4a^2b^2c^2

Prove that |(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2))| = 4a^(2)b^(2)c^(2) .

Prove that |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2

Prove that: 1/(bc+ca+ab)|[a, b, c],[a^2, b^2, c^2], [bc, ca, ab]|=(b-c),(c-a),(a-b)

If A=[(-a^2, ab, ac),(ab,-b^2,bc),(ac,bc,-c^2)] then det A is equal to (A) 4abc (B) 4a^2b^2c^2 (C) -4abc (D) -4a^2b^2c^2

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Prove that [[a^2,bc,c^2+ca],[a^2+ab,b^2,ca],[ab,b^2+bc,c^2]]= 4a^2b^2c^2 .

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2