Home
Class 12
MATHS
lim(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)...

lim_(n rarr oo)(1)/(sqrt(n)sqrt(n+1))+(1)/(sqrt(n)sqrt(n+2))+......+(1)/(sqrt(n)sqrt(4n))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))

lim_(n rarr oo)(sqrt(n+1)-sqrt(n))=0

lim_(n rarr oo)(3+sqrt(n))/(sqrt(n))

lim_(n rarr oo)((sqrt(n+3)-sqrt(n+2))/(sqrt(n+2)-sqrt(n+1)))

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)n[sqrt(n+1)-sqrt(n))]

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

sum_(n=1)^(oo)(1)/(sqrt(n)+sqrt(n+1))

lim _( x to oo) (1)/(sqrtn sqrt(n+1))+ (1)/(sqrtn sqrt(n+2)) is equal to :