Home
Class 11
MATHS
y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]...

`y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=sin^(-1)[sqrt(x-ax)-sqrt(a-ax)] then prove that (1)/(2sqrt(x)sqrt(1-x))

If y = "sin"^(-1)[xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)] and 0 lt x lt 1 then (dy)/(dx) at x = (sqrt3)/2 is

Find (dy)/(dx), if y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))]

If y=sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))) and 0

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0 < x < 1, then find (dy)/(dx)

"if "y=sin^(-1)[sqrt(x)sqrt(1-x^(2))-x sqrt(1-x)] and 0lt x lt 1," then find "(dy)/(dx).