Home
Class 12
MATHS
|[-2a,a+b,a+c],[b+a,-2b,b+c],[c+a,c+b,-2...

|[-2a,a+b,a+c],[b+a,-2b,b+c],[c+a,c+b,-2c]|=k(b+c)(c+a)(a+b)," then the value of "k" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

If |[b^2+c^2,a b,a c],[ a b, c^2+a^2,b c],[c a, c b, a^2+b^2]|=k a^2b^2c^2, then the value of k is a b c b. a^2b^2c^2 c. b c+c a+a b d. none of these

Using the factor theorem it is found that a+b , b+c and c+a are three factors of the determinant |[-2a ,a+b, a+c],[ b+a,-2b,b+c],[c+a ,c+b,-2c]| . The other factor in the value of the determinant is

Using the factor theorem it is found that a+b , b+c and c+a are three factors of the determinant |[-2a ,a+b, a+c],[ b+a,-2b,b+c],[c+a ,c+b,-2c]|. The other factor in the value of the determinant is

If |(b +c,c +a,a +b),(a +b,b +c,c +a),(c +a,a +b,b +c)| = k |(a,b,c),(c,a,b),(b,c,a)| , then the value of k, is 1 b. 2 c. 3 d. 4

If |(b +c,c +a,a +b),(a +b,b +c,c +a),(c +a,a +b,b +c)| = k |(a,b,c),(c,a,b),(b,c,a)| , then the value of k, is

If |(b+c,c+a,a+b),(a+b,b+c,c+a),(c+a,a+b,b+c)|=k|(a,b,c),(c,a,b),(b,c,a)| then the value of k is