Home
Class 11
MATHS
sin^2 4 8^0-cos^2 1 2^0=-(sqrt(5+1))/8...

`sin^2 4 8^0-cos^2 1 2^0=-(sqrt(5+1))/8`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^2 42^0-cos^2 78^0=(sqrt(5)+1)/8

Prove that: cos^2 48^0-sin^2 12^0=(sqrt(5)+1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that: cos^(2)48^(0)-sin^(2)12^(0)=(sqrt(5)+1)/(8)

Given that sin18^@=(sqrt5-1)/4 prove that sin^2 24^@-sin^2 6^@=(sqrt5-1)/8

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)