Home
Class 11
MATHS
Prove that cos36^0cos72^0cos108^0cos144^...

Prove that `cos36^0cos72^0cos108^0cos144^0=1/(16)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos36^(@)cos72^(0)cos108^(0)cos144^(0)=(1)/(16)

Prove that cos20^0cos40^0cos60^0cos80^0=1/(16)dot

Prove that cos20^0cos40^0cos60^0cos80^0=1/(16)dot

Prove that: cos20^0cos40^0cos60^0cos80^0=1/(16)

Prove that cos36^(@)cos72^(@)cos108^(@)cos144^(@)=1//16 .

Prove that: cos36^(@)cos72^(@)cos108^(@)cos144^(@)=(1)/(16)

Prove that: cos 10^0cos30^0cos 50^0cos 70^0=3/(16)

Prove that: cos 10^0cos30^0cos 50^0cos 70^0=3/(16)

Prove that : cos 20^0cos 40^0cos 60^0cos 80^0=1/(16)

Prove that (1)cos36^(@)cos72^(@)cos108^(@)cos144^(@)=(1)/(16)(2) Show that 4sin27^(@)=sqrt(5+sqrt(5))-sqrt(3-sqrt(5))