Home
Class 12
MATHS
int((x^(2)+1)e^(x))/((x+1)^(2))...

int((x^(2)+1)e^(x))/((x+1)^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (i) inte^x(t a n^(-1)x+1/(1+x^2))dx (ii) int((x^2+1)e^x)/((1+x)^2))dx

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

int(e^(x)(1-x)^(2))/((1+x)^(2))dx

int e^(x).(x^(2)+1)/((x+1)^(2))dx

int(x^(2)+x)/((e^(x)+x+1)^(2))dx

int_(0)^(1)(e^(x))/((1+e^(2x)))dx

Observer the following statements : A : int (x^(2)-1)/(x^(2)) e^((x^(2)+1)/(x))dx=e^((x^(2)+1)/(x))+c R: int f'(x)e^(f(x))dx=f(x)+c Then which of the following is true ?

STATEMENT-1 : int(x^(2)-1)/(x^(2))e^(((x^(2)+1)/(x)))dx=e^((x^(2)+1)/x)+C and STATEMENT-2 : intf'(x)e^(f(x))dx=e^(f(x))+c

STATEMENT-1 : int(x^(2)-1)/(x^(2))e^(((x^(2)+1)/(x)))dx=e^((x^(2)+1)/x)+C and STATEMENT-2 : intf'(x)e^(f(x))dx=e^(f(x))+c

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)