Home
Class 12
MATHS
If (sqrt3+i)^100=2^99(a+ib), then find...

If `(sqrt3+i)^100=2^99(a+ib),` then find

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sqrt(3)+i)^(100)=2^(99)(a+ib), then find

If (sqrt3+i)^(100)=2^(99)(a+ib) then b=

If (sqrt(3)+i)^(100)=2^(99)(a+i b) then a^(2)+b^(2)=

Statement-I : If e^(itheta)=costheta+isintheta then for the DeltaABCe^(iA)e^(iB)e^(iC)=-1 Statement-II : If (sqrt3+1)^(100)=2^(99)(a+ib) then b=2sqrt3

If (sqrt(3)+i)^(100)=2^(99)(a+ib) . Then show that a^(2)+b^(2)=4

(sqrt3+i)^100=2^99(p+iq) then p and q are the roots of which of the following quadratic equation?

If (sqrt(8)+i)^(50)=3^(49)(a+ib), then find the value of a^(2)+b^(2)

If (sqrt3+i)^(10)=a+ib , then a and b are respectively

If (sqrt8+i)^50 = 3^49(a+ib) , then a^2+b^2 is