Home
Class 10
MATHS
(sqrt(3+1))/(sqrt(2))=...

(sqrt(3+1))/(sqrt(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angles of the triangle whose sides are (sqrt(3)+1)/(2sqrt(2)), (sqrt(3)-1)/(2sqrt(2)) and sqrt(3)/2 .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

If S=[((sqrt(3)-1)/(2sqrt(2)),(sqrt(3)+1)/(2sqrt(2))),(-((sqrt(3)+1)/(2sqrt(2))),(sqrt(3)-1)/(2sqrt(2)))], A=[(1,0),(-1,1)] and P=S ("adj.A") S^(T) , then find matrix S^(T) P^(10) S .

sin^(-1)((sqrt(3)+1)/(2sqrt(2)))=

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

Prove that: sin15^(@)=(sqrt(3)-1)/(2sqrt(2))

(sqrt(3)+1+sqrt(3)+1)/(2sqrt(2))

(1)/(1-sqrt(2)+sqrt(3))+(1)/(1-sqrt(2)-sqrt(3))-(2)/(1+sqrt(2)-sqrt(3))+(3)/(sqrt(2))