Home
Class 12
MATHS
[1[1quad aquad b+c],[1quad bquad c+a],[1...

[1[1quad aquad b+c],[1quad bquad c+a],[1quad cquad a+b]|=],[0+b+c],[0]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that |[1,a ,b+c],[1,b, c+a],[1,c ,a+b]|=0 .

|[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b)]|=0

Show that |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b ,c(a+b)]|=0 .

prove |[1, b c, a(b+c)],[ 1, c a, b(c+a)],[ 1, a b, c(a+b)]|=0

Using the property of determinants and without expanding, prove that: |[1,b c, a(b+c)],[1,c a, b(c+a)],[1,a b, c(a+b)]|=0

Show that |1a b_c1b c+a1c a+b|=0

Without expanding, prove that : |{:(1, bc, a(b+ c) ),(1, ca, b ( c+ a) ),(1, ab , c( a+ b)):}|=0 .

Show without expanding at any stage that: [1,a,b+c],[1,b,c+a],[1,c,a+b]|=0

If a, b and c are any three vectors and their inverse are a^(-1), b^(-1) and c^(-1) and [a b c]ne0 , then [a^(-1) b^(-1) c^(-1)] will be

If a, b and c are any three vectors and their inverse are a^(-1), b^(-1) and c^(-1) and [a b c]ne0 , then [a^(-1) b^(-1) c^(-1)] will be