Home
Class 11
MATHS
[" ample "],[" 3.Use the principle of ma...

[" ample "],[" 3.Use the principle of mathematical induction to prove that "],[1^(3)+2^(3)+3^(3)+...+n^(3)=(n^(2)(n+1)^(2))/(4)quad AA n in N]

Promotional Banner

Similar Questions

Explore conceptually related problems

Use mathematical induction to prove that statement 1^(3) + 2^(3) + 3^(3) + . . . + n^(3) = (n^(2) (n + 1)^(2))/( 4) , AA n in N

By the principle of mathematical induction, prove that, for nge1 1^(3) + 2^(3) + 3^(3) + . . .+ n^(3)=((n(n+1))/(2))^(2)

By principle of mathematical induction,prove that 1^(3)+2^(3)+3^(3)+ . . .. +n^(3)=[(n(n+1))/(2)]^(2) for all ninNN

By the principle of mathematical induction prove that 1+2+3+4+…n= (n(n+1))/2

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Using the principle of mathematical induction, prove that 1.3 + 2.3^(2) + 3.3^(2) + ... + n.3^(n) = ((2n-1)(3)^(n+1)+3)/(4) for all n in N .

Use principle of mathematical induction to prove that: 1+2+3+……….+n=(n(n+1))/2

Using principle of mathematical induction, prove that 1 + 3 + 3^(2) + … 3^(n-1) = (3^(n) - 1)/(2)

Using the principle of mathematical induction prove that : the 1.3+2.3^(2)+3.3^(3)++n.3^(n)=((2n-1)3^(n+1)+3)/(4) for all n in N.