Home
Class 11
MATHS
Prove the following cos(pi/4-x)cos(pi/4...

Prove the following `cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos(pi/2-x)cos(pi/2-y)-sin(pi/2-x)sin(pi/2-y)=-cos(x+y)

cos(pi/4-A)cos(pi/4-B)-sin(pi/4-A)sin(pi/4-B)=sin(A+B)

Prove that cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

Prove that cos (pi/4-x) cos (pi/4-y)- sin (pi/4-x) sin(pi/4-y) =sin (x+y)

Prove that: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)=sin(x+y)

What is the value of cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)?

Prove that cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that: cos(pi/4-A)cos(pi/4-B)-sin(pi/4-A)sin(pi/4-B)="sin"(A+B)

cos((3pi)/4+x)-sin(pi/4-x)=?