Home
Class 11
MATHS
sin^(-1){(sin x+cos x)/(sqrt(2))},-(pi)/...

sin^(-1){(sin x+cos x)/(sqrt(2))},-(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate the following function with respect to x:sin^(-1){(sin x+cos x)/(sqrt(2))}-(3 pi)/(4)

cos^(-1)((sin x+cos x)/(sqrt(2))),(pi)/(4) lt x lt (5pi)/4

Differentiate the functions with respect to x:cos^(-1){(cos x+sin x)/(sqrt(2))},-(pi)/(4)

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

Express sin^(-1)((sin x+ cos x)/(sqrt2)) , where -(pi)/(4) lt x lt (pi)/(4) , in the simplest form.

Prove that cos^-1 ((sin x + cos x )/(sqrt2)) = x - (pi/4), (pi/4) le x le ((5pi)/4)

Simplify: ^(*)sin^(^^)(-1)((sin x+cos x)/(sqrt(2))),backslash-pi/4

Show that : int_(0)^((pi)/(2))(sin^(2)x)/(sin x+cos x)dx=(1)/(sqrt(2))log(sqrt(2)+1)

If I=int(sqrt(cot x)-sqrt(tan x))dx, then I equal sqrt(2)log(sqrt(tan x)-sqrt(cot x))+Csqrt(2)log|sin x|cos x+sqrt(sin2x)|+Csqrt(2)log|sin x-cos x+sqrt(2)sin x cos x|+sqrt(2)log|sin(x+(pi)/(4))+sqrt(2)sin x cos x|+C

int_0^(pi//2) (sin x + cos x)/(sqrt(1 + sin 2x)) dx is :