Home
Class 12
MATHS
int(a)^(b)x^(2)dx...

int_(a)^(b)x^(2)dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose f is continuous on [a,b] & f(a)=f(b)=0 & int_(a)^(b)f^(2)(x)dx=1 then the minimum value of int_(a)^(0)(f^(')(x))^(2)dx int_(a)^(b) x^(2)f^(2)(x)dx is k , then 8k is

Using the definition of definite integral as the limit of a sum, evaluate : int_(a)^(b)2^(x)dx

Let f(a,b) = int_(a)^(b)(x^(2)-4x+3)dx, (bgt 0) then

int_(b)^( a)x^(2)dx=

If int_(a)^(b)f(dx)dx=l_(1), int_(a)^(b)g(x)dx = l_(2) then :

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a, b) is:

Let I=int_(a)^(b)(x^(4)-2x^(2))dx . If I is minimum then the ordered pair (a,b) is (-sqrtk,sqrtl) . The value of (k+l) is _________.