Home
Class 11
MATHS
8cosxcos2xcos4x=(sin 6x)/sinx...

`8cosxcos2xcos4x=(sin 6x)/sinx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The general solution of the equation 8cosxcos2xcos4x=(sin6x)/(sin x) is x=((npi)/7)+(pi/(21)),AAn in Z x=((2pi)/7)+(pi/(14)),AAn in Z x=((npi)/7)+(pi/(14)),AAn in Z x=(npi)+(pi/(14)),AAn in Z

The general solution of the equation 8cosxcos2xcos4x=(sin6x)/(sin x) is x=((npi)/7)+(pi/(21)),AAn in Z x=((2pi)/7)+(pi/(14)),AAn in Z x=((npi)/7)+(pi/(14)),AAn in Z x=(npi)+(pi/(14)),AAn in Z

The general solution of the equation 8cosxcos2xcos4x=(sin6x)/(sin x) is x=((npi)/7)+(pi/(21)),AAn in Z x=((2pi)/7)+(pi/(14)),AAn in Z x=((npi)/7)+(pi/(14)),AAn in Z x=(npi)+(pi/(14)),AAn in Z

The general solution of the equation 8 cos x cos 2x cos 4x=sin 6x/sinx is

The equation 8cosx cos2x cos4x = (sin6x)/(sinx) has a solution given by :

Show that (sin8xcosx-sin6xcos3x)/(cos2xcosx -sin3xsin4x)=tan2x

Evaluate : lim_(x to 0)(1-cosxcos2xcos3x)/(sin^(2)2x)

Prove that cos^2 2x-cos^2 6x=sin4x sin8x

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

If f(x)=cosxcos2xcos4xcos8xcos16x," then "f'((pi)/(4)) is