Home
Class 12
MATHS
The value of int(-1)^(1)[|x|](1)/(1+e^(-...

The value of `int_(-1)^(1)[|x|](1)/(1+e^(-(1)/(x)))dx` where [.] denotes the greatest integer function is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

he value of 1=int_(0)^(3)([x]+[x+(1)/(3)]+[x+(2)/(3)])dx where [.] denotes the greatest integer function is equal to

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

The value of int_(-2)^(1)[x[1+cos((pi x)/(2))]+1]dx where [.] denotes the greatest integer function,is 1 (b) 1/2 (c) 2 (d) none of these

int_(-1)^(1)[cos^(-1)x]dx (where [.] denotes greatest integer function)

The value of int_(1)^(e^(6)) [(log x)/(3)] dx (where [.] denotes the greatest integer function) is (e^(a)-e^(b)) then the value of (a)/(b) is

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

The value of I = int_(-1)^(1)[x sin(pix)]dx is (where [.] denotes the greatest integer function)