Home
Class 12
MATHS
An ellipse with foci (-1,1) and (1,1) pa...

An ellipse with foci (-1,1) and (1,1) passes through (0,0) .Then its equation is
A)`x^(2)+2y^(2)-8y=0` B)`x^(2)+2y^(2)+4y=0` C)`x^(2)+2y^(2)+8y=0` D)`x^(2)+2y^(2)-4y`=0

Promotional Banner

Similar Questions

Explore conceptually related problems

The circles whose equations are x^(2)+y^(2)+10x-2y+22=0 and x^(2)+y^(2)+2x-8y+8=0 touch each other. The circle which touch both circles at, the point of contact and passing through (0,0) is, 1) 9(x^(2)+y^(2))-15x-20y=0, 2) 5(x^(2)+y^(2))-18x-80y=0 3) 7(x^(2)+y^(2))-18x-80y=0, 4) x^(2)+y^(2)-9x-40y=0 ]]

The equation of the circle having its centre on the line x+2y-3=0 and passing through the points of intersection of the circles x^(2)+y^(2)-2x-4y+1=0andx^(2)+y^(2)-4x-2y+4=0 is x^(2)+y^(2)-6x+7=0x^(2)+y^(2)-3y+4=0 c.x^(2)+y^(2)-2x-2y+1=0x^(2)+y^(2)+2x-4y+4=0

The equation of the circle having the center on the line x+2y-3=0 and passing through the point intersection of the circles x^(2)+y^(2)-2x-4y+1=0andx^(2)+y^(2)-4x-2y+4=0 is x^(2)+y^(2)-6x+7=0x^(2)+y^(2)-3u-2y+4=0x^(2)+y^(2)-2x-2y+1=0x^(2)+y^(2)+2x-2y+4=0

The circles x^(2)+y^(2)-2x-4y+1=0 and x^(2)+y^(2)+4y-1 =0

Let vertices of the triangle ABC is A(0,0),B(0,1) and C(x,y) and perimeter is 4 then the locus of C is : (A)9x^(2)+8y^(2)+8y=16(B)8x^(2)+9y^(2)+9y=16(C)9x^(2)+9y^(2)+9y=16(D)8x^(2)+9y^(2)-9x=16

The locus of a point "P" ,if the join of the points (2,3) and (-1,5) subtends right angle at "P" is x^(2)+y^(2)-x-8y+13=0 x^(2)-y^(2)-x+8y+3=0 x^(2)+y^(2)-4x-4y=0,(x,y)!=(0,4)&(4,0) x^(2)+y^(2)-x-8y+13=0,(x,y)!=(2,3)&(-1,5)

(3,-4) is the point to which the origin is shifted and the transformed equation is X^(2)+Y^(2)=4 then the original equation is (A) x^(2)+y^(2)+6x+8y+21=0 (B) x^(2)+y^(2)+6x+8y-21,=0 (C) x^(2)+y^(2)-6x+8y+21=0 (D) x^(2)+y^(2)-6x-8y+21=0

If the lines 2x+3y+1=0 and 3x-y-4=0 lie along diameters of a circle of circumference 10 pi ,then the equation of the circle is (A) x^(2)+y^(2)-2x+2y-23=0 (B) x^(2)+y^(2)+2x-2y-23=0 (C) x^(2)+y^(2)+2x+2y-23=0 (D) x^(2)+y^(2)-2x-2y-23=0

x^(2) - 1 = 0, y^(2) + 4y + 3 = 0