Home
Class 9
MATHS
if x=sqrt(3)+1/sqrt(3) and y=sqrt(3)-1/s...

if `x=sqrt(3)+1/sqrt(3)` and `y=sqrt(3)-1/sqrt(3)` then` x^2-y^2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)/(sqrt3-1) then x^2-xy+y^2

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)

If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2) is equal to

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

If x=(2)/(sqrt(3)-sqrt(5)) and y=(2)/(sqrt(3)+sqrt(5)) , then x+y = _______ .

sqrt (2x) -sqrt (3y) = 0sqrt (3x) -sqrt (3y) = 0