Home
Class 12
MATHS
If (x+iy)^(3)=u+iv,then show that u/x+v...

If `(x+iy)^(3)=u+iv`,then show that `u/x+v/y =4(x^(2) -y^(2))`?

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+i y)^3=u+i v , then show that u/x+v/y=4(x^2-y^2)

If (x+i y)^3=u+i v , then show that u/x+v/y=4(x^2-y^2)

If (x+i y)^3=u+i v , then show that u/x+v/y=4(x^2-y^2) .

If (x+i y)^3=u+i v , then show that u/x+v/y=4(x^2-y^2) .

If (x+iy)^3 = u+iv, then show that u/x+v/y=4( x^3 - y^3 )

If (x+iy)^3 = y+vi, then show that y/x+v/y=4( x^2 - y^2 )

If (x+yi)^(3)=u + vi , prove that (u)/(x) +(v)/(y) = 4(x^(2)-y^(2))

If z = x + iy and |2z+1|=|z-2i| ,then show that 3(x^(2)+y^(2))+4(x+y)=3