Home
Class 11
MATHS
If cot(sin^-1(sqrt(13/17)))=sin(tan^-1x)...

If `cot(sin^-1(sqrt(13/17)))=sin(tan^-1x)` then value of `x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos(sin^(-1)sqrt(13/17))=sin(tan^(-1)x) then x=

Show that cot(Sin^-1sqrt(13/17))=sin(Tan^-1""2/3) .

cot[Sin^(-1)sqrt(13/17)]-sin[Tan^(-1)""2/3]=

If cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(x sqrt(6))),x!=, then possible value of x is

If cot^(-1) ( - (1)/(sqrt(3))) =x then the value of sin x is

Assertion: sin(cot^(-1)(1/2))=tan(cos^(-1)x) then the value of x=(sqrt(5))/3 Reason R: cos(tan^(-1)(sin(cot^(-1)x)))=sqrt(((1+x^(2))/(2+x^(2))))

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is

If cot(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)(xsqrt(6))),\ x!=0 , then possible value of x is