Home
Class 11
MATHS
If sin^-1x+sin^-1y+sin^-1z=pi then x^4+y...

If `sin^-1x+sin^-1y+sin^-1z=pi` then `x^4+y^4+z^4+4x^2y^2z^2`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x +sin^(-1)y+sin^(-1)z=pi then x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=

If sin^-1 x+sin^-1 y+sin^-1 z=pi , prove that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If sin^-1 x+sin^-1 y+sin^-1 z= pi prove that: x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^20

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, then x^(4)+y^(2)+z^(4)+4x^(2)y^(2)z^(2)=K(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2)) where K is equal to 1( b) 2(c)4(d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , show that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , show that x^4+y^4+z^4+4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)