Home
Class 12
MATHS
If |z1|=|z2| and arg(z1)+arg(z2)=pi/2 th...

If `|z_1|=|z_2|` and `arg(z_1)+arg(z_2)=pi/2` then
(A) `z_1z_2` is purely real
(B) `z_1z_2` is purely imaginary
(C) `(z_1+z_2)^2` is purely imaginary
(D) `arg(z_1^(-1))+arg(z_2^(-1))=-pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

|z_(1)|=|z_(2)| and arg((z_(1))/(z_(2)))=pi, then z_(1)+z_(2) is equal to

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then z 1 ​ +z 2 ​ is equal to

If |z_1|=|z_2| and arg((z_1)/(z_2))=pi , then z_1+z_2 is equal to (a) 0 (b) purely imaginary (c) purely real (d) none of these

If z is purely imaginary ; then arg(z)=+-(pi)/(2)

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If (2z_1)/(3z_2) is purely imaginary then |(z_(1)-z_(2))/(z_(1)+z_(2))|

If |z_1-1|=Re(z_1),|z_2-1|=Re(z_2) and arg (z_1-z_2)=pi/3, then Im (z_1+z_2) =