Home
Class 12
MATHS
If I=|[1,0],[0,1]|,B=|[0,1],[-1,0]| and ...

If `I=|[1,0],[0,1]|,B=|[0,1],[-1,0]|` and `C=|[costheta,sintheta],[-sintheta,costheta]|` the C=

Promotional Banner

Similar Questions

Explore conceptually related problems

If I= [[1,0],[0,1]] , J = [[0,1],[-1,0]] and B = [[costheta, sintheta],[-sintheta, costheta]] , then B= (A) Icostheta+Jsintheta (B) Icostheta-Jsintheta (C) Isintheta+Jcostheta (D) -Icostheta+Jsintheta

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

If I=[(1 ,0),( 0, 1)] , J=[(0, 1),(-1 ,0)] and B=[(costheta,sintheta),(-sintheta,costheta)] , then B equals a) Icostheta+Jsintheta (b) Isintheta+Jcostheta (c) Icostheta-Jsintheta (d) Icostheta+Jsintheta

If I=[(1 ,0),( 0, 1)] , J=[(0, 1),(-1 ,0)] and B=[(costheta,sintheta),(-sintheta,costheta)] , then B equals a) Icostheta+Jsintheta (b) Isintheta+Jcostheta (c) Icostheta-Jsintheta (d) Icostheta+Jsintheta

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

costheta -sintheta -cottheta +1=0

(1+sintheta-costheta)/(1+sintheta+costheta)=

(1+sintheta-costheta)/(1+sintheta+costheta) =

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)