Home
Class 11
MATHS
Let for a丈a!关0, f(x)-ax2 + bx + c, g(x) ...

Let for a丈a!关0, f(x)-ax2 + bx + c, g(x) = aix? + bix + c, and p(x)-f(x)-g(x). If p(x) = 0 only for x =-1 and p(-2) = 2, then the value of p(2) is: (1) 18 (2) 3 AIEEE-2011] (3) 9 (4) 6

Promotional Banner

Similar Questions

Explore conceptually related problems

Let for a?a!?0, f(x)-ax2 + bx + c, g(x) = aix? + bix + c, and p(x)-f(x)-g(x). If p(x) = 0 only for x =-1 and p(-2) = 2, then the value of p(2) is: (1) 18 (2) 3 AIEEE-2011] (3) 9 (4) 6

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .

Let for a != a_1 != 0 , f(x)=ax^2+bx+c , g(x)=a_1x^2+b_1x+c_1 and p(x) = f(x) - g(x) . If p(x) = 0 only for x = -1 and p(-2) = 2 then the value of p(2) .

Let for a!=a_(1)!=0,f(x)=ax^(2)+bx+cg(x)=a_(1)x^(2)+b_(1)x+c_(1) and p(x)=f(x)-g(x). If p(x)=0 only for x=-1 and p(-2)=2 then the value of p(2)

Let p(x) = 2x^2+4x+6 . Find the value of p(0),p(-2),p(3).

If (x + 6) is a factor of f (x) = x ^(3) + 3x ^(2) + 4x + P, then find the value of P.

Let P(x) = x^4 + ax^3 + bx^2 + cx + d, where a, b, c, d in RR .Suppose P(0) = 6, P(1)=7, P(2) = 8 and P(3)=9, then find the value of P(4).