Home
Class 11
MATHS
[7+77+777+......+777,....7],[,=(7)/(81)(...

[7+77+777+......+777,....7],[,=(7)/(81)(10^(n+1)-9n-10)]

Promotional Banner

Similar Questions

Explore conceptually related problems

By using the Principle of Mathematical Induction, prove the following for all n in N : 7+77+777 +........ to n terms = 7/81 (10^(n+1)-9n-10) .

prove that 7 + 77 + 777 +...... + 777........._(n-digits) 7 = 7/81 (10^(n+1) - 9n - 10) for all n in N

prove that 7 + 77 + 777 +...... + 777........._(n-digits) 7 = 7/81 (10^(n+1) - 9n - 10) for all n in N

If ninNN , then by principle of mathematical induction prove that, 7+77+777+ . . . to n terms =(7)/(81)(10^(n+1)-9n-10) .

Prove the following by the principle of mathematical induction: 7+77+777++777++ddot n-digits7=(7)/(81)(10^(n+1)-9n-10) for all n in NB.

Prove the following by the principle of mathematical induction: 7+77+777+.....+777++\ ddotn-d igi t s7=7/(81)(10^(n+1)-9n-10) for all n in N Bdot

Using mathematical induction show 7+77+777+......+n terms = 7/81(10^(n+1)-9n-10)

Prove the following by the principle of mathematical induction: 7+77+777++777++\ ddotn-d igi t s7=7/(81)(10^(n+1)-9n-10) for all n in N

Prove the following by the principle of mathematical induction: 7+77+777++777++\ ddotn-d igi t s7=7/(81)(10^(n+1)-9n-10) for all n in N

Sum of n terms of the series 8 + 88 + 888 + .... equals (a) 8/81 [10^(n+1) - 9n - 10] (b) 8/81[10^n - 9n -10] (c) 8/81[10^(n+1) - 9n + 10] (d)none of these