Home
Class 12
MATHS
If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)...

If `z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z)))` equal

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=(pi)/(4) (1+i)^(4) ((1- sqrtpi i)/(sqrtpi + i) + (sqrtpi -i)/(1+ sqrtpi i)) , then ((|z|)/("arg"(z))) equals

If z=pi/4(1+i)^4((1-(pi)i)/((pi)+i)+((pi)-i)/(1+(pi)i)),then"((|z|)/(a m p(z))) equal

z=(1-i)/(cos(pi/3)+i sin(pi/3))

Prove that (i)(1-sqrt(3)i)=2((cos)(pi)/(3)-i(sin)(pi)/(3))

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) equal to ?

The amplitude of (1+i sqrt(3))/(sqrt(3)+i) is (pi)/(3) b.-(pi)/(6) c.(pi)/(3) d.(pi)/(6)

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

If z=(3+4i)^(6)+(3-4i)^(6),"where" i=sqrt(-1), then Im (z) equals to

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) - I_(2) equal to ?