Home
Class 11
MATHS
" If "lim(x rarr2)(x^(9)-a^(9))/(x-a)=li...

" If "lim_(x rarr2)(x^(9)-a^(9))/(x-a)=lim_(x rarr5)(x+4)," then all possible real values of a are "

Promotional Banner

Similar Questions

Explore conceptually related problems

If (lim)_(x rarr a)(x^(9)-a^(9))/(x-a)=(lim)_(x rarr5)(4+x) find all possible values of a .

lim_(x rarr3)(x^(2)-9)/(x-3)

lim_(x rarr2)(x^(3)-8)/(x^(2)-4)

lim_(x rarr2)(5^(-x)-(0.04))/(x-2)

lim_(x rarr5)(x^(2)-9x+20)/(x-[x])

Consider the function f(x) = (x^2 - 4)/(x - 2) If lim_(x rarr a) (x^4 - a^4)/(x -a) = lim_(x rarr 0) (e^(4x) -1)/x , find all possible values of a.

If lim_(x rarr a) (x^(5)-a^(5))/(x-a)=5 , then find the sum of the possible real value of a.

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

Lim_(x rarr2)(x^(5)-32)/(x^(2)-4)

lim_(x rarr3)(x^(3)-27)/(x^(2)-9)