Home
Class 11
MATHS
" 8."a^(2)sin(B-C)=(b^(2)-c^(2))sin A...

" 8."a^(2)sin(B-C)=(b^(2)-c^(2))sin A

Promotional Banner

Similar Questions

Explore conceptually related problems

In a Delta ABC if a^(2)sin(B-C)+b^(2)sin(C-A)+c^(2)sin(A-B)=0, then triangle is

Prove that (a sin(B-C))/(b^(2)-c^(2))=(b sin(C-A))/(c^(2)-a^(2))=(c sin(A-B))/(a^(2)-b^(2))

(x) (a sin(B-C))/(b^(2)-c^(2)) = (b sin (C-A))/(c^(2)-a^(2)) = (c sin(A-B))/(a^(2)-b^(2))

Show that (a sin (B-C))/( b^(2) - c^(2)) - ( b sin (C-A))/( c^(2) - a^(2)) - ( c sin ( A- B))/( a^(2) -b^(2))

In a Delta ABC " if " a^(2) sin (B - C) + b^(2) sin (C - A) + c^(2) sin (A - B) = 0 , then triangle is

In DeltaABC=(b^(2)+c^(2))/(b^(2)-c^(2))=(Sin(B+C))/(Sin(B-C)) then the triangle is

In a Delta A B C , prove that: ((b^2-c^2)/(a^2))sin2A+((c^2-a^2)/(b^2))sin2B+((a^2-b^2)/(c^2))sin2C=0

If A+B+C=pi, then prove that sin(B+2C)+sin(C+2A)+sin(A+2B)=4sin((B-C)/(2))sin((C-A)/(2))sin((A-B)/(2))